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This paper questions the idea of function on the basis of classroom research at upper 
secondary level in the Casyopée project (Lagrange, 2010). In this project, students 
are introduced to functions by working on the same functional dependency in four 
settings. The underlying theoretical framework is a multi-representation view of 
functions. In cross-experiments and cross-studies this approach has been confronted 
with other approaches. This implied to reconsider the idea of function and to examine 
the potential of the idea of connected functional workspaces for designing and 
analysing classroom situations around functions especially in technological 
environments. 
Keywords: Casyopée, Modelling Cycle, Functions, Functional Workspaces,  Semiotic 
systems. 
This paper examines the potential offered by technological environments and 
associated signs systems in the mathematical work of the student around the notion of 
function. It does this on the basis of classroom research at upper secondary level, 
supported by the design and experimentation of the Casyopée software (Lagrange 
2010). 
Activities on functions mobilize many material or mental artefacts associated with 
varied semiotic systems. We consider these artefacts as representations, that is to say, 
entities with which the mathematician or apprentice mathematician interacts and to 
which he or she assigns a meaning. Semiotic systems are special entities 
systematizing practices in a given culture. 
The work around Casyopée fits into the functional approach to algebra as encouraged 
by many curricula, while relying on didactical frameworks, especially around the 
semiotic systems (Duval 1999, Radford 1999), and around functions viewed as co- 
variations (Thompson 1994). The activities offered to students are considered through 
a "modelling cycle" where the same functional dependency is studied in four settings: 
(1) a physical system (2) a dynamic geometry construction modelling the system (3) 
co- variation between quantities involved in the construction (4) a function defined 
by a symbolic expression (Minh 2011). 
In cross-experiments and cross-studies (Lagrange & Psycharis 2013; Lagrange & 
Kynigos 2014) this approach has been confronted with other approaches showing that 
the modelling cycle is adapted to the analysis of situations beyond the work around 
Casyopée, but also the limits of considering this work in a multi-representation 
approach. This opens questions discussed in the paper: 
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- Why and how stay away from a Platonic view of the notion of function? 
- What are the benefits of seeing the four settings of the modelling cycle as connected 
functional workspaces? 
In the conclusion, I discuss further work especially on cognition inside and between 
workspaces.  

HELPING STUDENTS TO MAKE SENSE OF MATHEMATICAL 
SYMBOLISM WITH THE SUPPORT OF THE COMPUTER  
Comparing two research projects aiming at using technology to offer students “more 
learnable” mathematics, Hoyles, Lagrange and Noss (2006) stressed how, in the 
paper/pencil context, symbolism is a major obstacle for most students. 

Paper/pencil algebraic infrastructures make it necessary for individuals to pay 
considerable attention to manipulation, and key mathematical topics are only 
amenable to those who had already been inducted into fluent algebraic 
representations and calculations. This means that many never engage with the 
mathematical topic at hand (p. 269). 

My main concern at this time was whether, knowing these difficulties and the 
potentialities of dynamic technologies like dynamic geometry, spreadsheet, etc. for 
exploration of mathematical notions and problems, mathematical symbolism would 
survive outside pure professional mathematics. I noted that 

Computer symbolic systems (CAS), have been presented as a means to 
overcome students' difficulties in paper/pencil manipulations (…) Although 
promising, this approach has not been, in our view, sufficiently discussed from 
an epistemological point of view, and its 'viability', that is to say the conditions 
in which it could be effective in actual classrooms, remains problematic (p. 
270).  

I explained that the main aim of the Casyopée project I was starting with colleagues 
and teachers, was to address the challenge of developing a CAS tool that could be 
effective in secondary classrooms. Relatively to representation, this development was 
mainly inspired by Duval (1999)’s framework presented in the next section and 
exploited for discussing a task for students motivated by this approach. 

A « REGISTER » APPROACH OF MULTI-REPRESENTATION 
For Duval (1999, p.4), “there is no other ways of gaining access to the mathematical 
objects but to produce some semiotic representations (…) On the other hand, the 
understanding of mathematics requires not confusing the mathematical objects with 
the used representations”. According to Duval, rather than opposing material and 
mental representations, it is necessary to distinguish two types of implementation of 
representations by the subject, the automatic activation of an artifact (material or 
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mental) that he names organic system, and the intentional exploitation of a semiotic 
system (Figure 1). 
Implicitly, Duval presupposes the existence of mathematical objects. Then in 
automatic activation, this object itself produces the representation, for instance 
“proportionality” produces points in a line on a concrete graph, and in intentional use, 
a semiotic system, that is to say a set of symbols and rules for using them, represents 
the object (that is to say is used in place of the object). Thus, representing 
“something” can be thought of in two ways: the activation of a mental or physical 
device making this “something” work or the conscious use of a semiotic system in 
place of the “something”. 

 
Figure 1. representations and their implementations (from Duval 1999) 

For Duval, each semiotic system or “register of representation” has its own specific 
means of representations and processing. Duval stresses the need for a specific focus 
of teaching learning on the processes of work inside the registers (treatments) and 
between the registers (conversion). Relatively to functions at upper secondary level, 
two registers are generally involved, the register of symbolic expressions and the 
graphic register of curves of functions. Many research studies show that in classroom 
practices the register of symbolic expressions dominates, and in this register rote 
treatments dominate over interpretation of expressions and understanding of the rules 
and purpose of transformations1. Conversions are always from mathematical 
expression to graphs, occurring in standardized tasks like finding the true graph of a 
function from its symbolic expression. 
In this section, I look at the conditions in which technology can help a more versatile 
use of each of these registers as well as a balance and coordination between these 
registers, drawing from a classroom situation using Casyopée, studied by Minh 
(2011)It deals with pre-calculus students and the following task.  

Consider the family of functions  over the set of real numbers 
 , k being a real parameter. Study the variations of   

depending on k. 

                                           
1 For a recent example, showing how even when using a software like GeoGebra for introducing a function, a teacher 
does not break with this dominant conception of functions, see Robert & Vandebrouck (2014, p. 264). 

The representation is the outcome 
of a physical action of the

Automatic 

Activating an organic system
or a physical device        

 .

Intentional
Bringing into play a semiotic system    

 
    

   
The representation denotes 
the represented object 
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This task has been chosen because a pure symbolic solution is not directly accessible 
through standard techniques, since the root of the derivative cannot be calculated 
symbolically. An effective standard technique is to study the variations of the 
derivative, after calculating the second derivative, but this technique is not known by 
students. Another feature is that the function has three different behaviours depending 
on k ( see Figure 2) one on the left for k greater than a certain value (e-2), the second 
between this value and zero, and the third for k negative.  

 
Figure 1. Three behaviours of the function 

The important thing is that this value is close to zero, and thus a pure graphical 
exploration might overlook the intermediate behaviour. It can be expected that most 
students will first animate the parameter for integer values and then skip this 
intermediate behaviour. However a close inspection of the graph of the derivative for 
k=0 and k=1 (Figure 3) will give a clue that ‘something happens’ between these 
values: passing from 0 to 1, the curve is translated vertically, and then an intermediate 
value would bring the curve to intersect the x-axis in two points. This idea of a 
translation is confirmed by the symbolic expression  where 
k is an additive constant. Then, in order to carry out the task, the students have to 
perform non-routine processes inside the symbolic and the graphic registers, and to 
coordinate explorations and observations in the two registers. 

    
Figure 2. The derivative for k=0 and k=1 

Designed as a CAS system especially devoted to functions at this level, Casyopée 
allows students to perform automatically standard calculation like derivatives and 
solutions of equations, as well as to graph functions. Piloting the values of k by way 
of a slider helps to animate the graph of the function, and also to instantiate this 
parameter inside expressions of the functions. In short Casyopéee is expected to give 

k≥ e-2 e- k ≤ 0 
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security for calculation and to favour joint interpretation of graphs and symbolic 
expressions. 
Investigating students’ solutions at various stages, we observed three types of 
answers. 
In a first type 1 (Figure 3), the intermediate behaviour is not detected. The student 
keeps the default value 1 for the step in the animation of the parameter and does not 
closely look at the derivative. This type of answers is frequent by beginners not yet 
acquainted with the management of the parameters in Casyopée and who do have not 
a flexible use of the derivative. 
 

 

By changing some values, I 
observe that if k ≤ 0, f(x) is 
first increasing then 
decreasing. 
After k is higher than a 
certain value, f is strictly 
increasing. 

Figure 3. A type 1 answer 
In a second type of answer (Figure 5) the student realizes that it is easier to observe 
the graph of the derivative as compared to the graph of the function. Animating the 
graph with a smaller step of the parameter, she detects the intermediate behaviour, but 
she dwells in the graphic register, and then she cannot find the critical value (Figure 
5).  
 

 

• When k is higher than a 
certain value, f is 
increasing. 

• When k is between 0 and a 
certain value, f is, 
decreasing, then 
increasing. 

• When k is lower or equal 
to 0, f is increasing then 
decreasing. 

Figure 4. A type 2 answer 

In a third type of answer (Figure 6), the student finds the critical value e-2 by asking 
Casyopée for the solution of f ’(2)=0 (Figure 5). Analysing her approach, we identify 
four steps: 

- she observes on the graph that the derivative is always maximum for x=2, 
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- coordinating the symbolic form of the derivative and its graphic representation, 
she notes that k is an additive constant and then the animation translates the 
graph vertically, 

- she figures out that to find the critical value, she has to “bring the graph” onto 
the x-axis, which is not possible by animating for decimal values of the 
parameter, 

- she solves symbolically by way of the equation in k, f’(2)=0. 

 
Figure 5. A type 3 answer 

This third type of answer is observed by students mature with the use of Casyopée 
(Minh, ibid). It is evidence of a very effective coordination between the symbolic and 
the graphic register. Casyopée provides means that make this coordination effective. 
It does not in itself give the students this capacity for coordinating registers. This 
capacity is the result of a process of students’ growing awareness of Casyopée’s 
functionalities and of the idea of functions as expressed in several registers. This is a 
process of instrumental genesis (Lagrange 1999) that Minh (2011) observed by 
students all along two years of studying pre-calculus. 

ALTERNATIVE REPRESENTATIONS OF FUNCTIONS 
Duval’s framework is very rich and many researchers draw on, especially when 
dealing with digital representations. As said before, it presupposes that “ideal” 
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mathematical objects (notions, ideas, concepts…) exist. As shown above, Duval’s 
registers of representation were productive in the development of a tool for helping 
students deal with tasks about functions. However, it was only a first stage and I 
regretted in Hoyles, Lagrange and Noss (2006) that  

Casyopée works on functions given by symbolic representations and till now 
provides no enactive representation for non-symbolic functional exploration 
and limitations in the students' experimental activity, especially when 
modelling phenomena. (p. 282) 

I also pointed out the need to develop features allowing students to work with 
enactive non- symbolic representations. Short after writing this, I had the opportunity 
to work with colleagues on an extension of Casyopée in a project whose name was 
“Representing Mathematics with Digital Medias” (Lagrange & Kynigos 2014). With 
regard to Casyopée, one goal was to explore new, non standard representations of 
functions. We had also to carry on “cross studies” of digital tools developed inside 
the project. In this section I report first on new ways of representing functions 
introduced in this extension of Casyopée, and then on other views coming from the 
“cross studies”. 
Modelling dependencies in a physical system 
One outcome of the work on Casyopée in ReMath and after was a broadened view on 
functions in the students’ mathematical activity. The idea of modelling dependencies 
in the physical world was thought of as a way to allow students to work with enactive 
non-algebraic representations of phenomena and to pass fluidly between algebraic 
and non-algebraic representations. More precisely, the Casyopée team imagined a 
“modelling cycle” organising models of a dependency in specific settings. Figure 7 
illustrates this cycle with the example of the “amusement park ride” that I will use in 
this sub-section.  
Basically, dependency is a human experience involving items in a physical device. In 
this setting, one item moves and another follows. I consider dynamic geometry as a 
second settings and the product of an evolution: human beings used drawings since 
the prehistoric times to “represent” features of the physical world and they made 
them evolve to allow accurate work related to physical devices; recently dynamic 
geometry added the particular capacity of “representing” dependencies: when the user 
drags an object on the screen, another object follows on the screen. Passing from a 
physical device to a dynamic geometry figure is in no way trivial, since it implies the 
identification of relevant features of the device and of their geometrical dependencies.  
Quantities constitute a third setting for working about dependencies. According to 
Thompson (2011, p.37), a quantity is the outcome of a process of “conceptualizing an 
object and an attribute of it so that the attribute has a unit of measure”. Thompson 
(ibid.) stresses the role played by quantitative reasoning in students’ operations of 
generalizing, and of the role that generalizing plays in students’ development of 
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algebraic reasoning. He offers a number of ‘dispositions’ that can aid students’ 
construction of algebraic reasoning from quantitative reasoning. Among these, 
consistent with the school level the Casyopée project is intended for, I retain 
reasoning with magnitudes, that is to say attributes of objects considered 
independently of the unit in which they are measured. As Thompson (1994) says 
“one way to think of the evolution of today’s many ways to think of functions is as 
the current state of a long battle to conceptualize our world quantitatively and then 
this world of quantities or magnitudes, often overlooked in secondary curricula, is a 
key representational setting for students’ access to functions. Especially, in this 
setting, distinguishing functional dependency from co-variation, and identifying an 
independent variable are crucial challenges. As a fourth setting, functions defined by 
a symbolic expression, like those considered in the previous section, is the outcome 
of a historical process of emergence of functions as an individualized mathematical 
entity by mathematicians like Descartes, Newton and Leibniz as a tool for building 
infinitesimal calculus.  

The extension of Casyopée 
The extension of Casyopée carried out in the ReMath was intended to provide an 
environment supporting these various representations and their connections. It 
consisted in adding first a dynamic geometry window and second, representations of 
measures and of their covariation in a “geometric calculation tab”. The existing part 
of Casyopée remained in an enhanced form, under the denomination of “symbolic 
window”. The “geometric calculation tab” was designed as a unique feature, allowing 
to explore covariations between couples of magnitudes, to export couples that are in 
functional dependency into the symbolic window and then to define a function 
modelling the dependency, likely to be treated with all the available tools. In order to 
help students in modelling dependencies, this can be done automatically (Lagrange 
2010). We will refer to this functionality as “automatic modelling” below2. 
For the Casyopée team, the goal was that students meet functions from meaningful 
questions and under connected representations in these four settings. An example is 
the “amusement park ride” situation.  
A wheel rotates with uniform motion around its horizontal axis. A rope is attached at 
a point on the circumference and passes through a fixed guide. A car is hanging at 
the other end.  
The motion is chosen in order that a person placed in the car feel a smooth transition 
at high point and abrupt at low point and then, in the classroom, the focus is on the 
identification of these different transitions on a physical model and on a mathematical 

                                           
2 For a detailed presentation of this functionality and Casyopée’s other capabilities, please see the documentation 
downloadable from the web site. http://www.casyopee.eu/ 
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function modeling the movement of the car. It is expected that students associate the 
transition at the highest position of the car with a turning point of the function and the 
transition at the lowest position with the non differentiability of the function at the 
corresponding point. The dynamic figure and the expression of the movement as a 
dependency between magnitudes are essential parts of the modelling activity, helping 
to make sense of the relationship between the physical model and the mathematical 
function. 

 

A classroom observation 
The situation was carried out with a 12th grade class (17-18 years old students) in a 90 
mn session. The problem was given in “real life” settings, the students being able to 
manipulate a scaled device. The students were first asked to describe to describe what 
is happening at the lower point and whether it is different as compared to the high 
point. They were encouraged to refer at how a person in the car would ‘feel’ the 
difference and to draw a graph to explain their answer. Then they were told that, 
during the session, they have to build a mathematical model in order to better 
investigate the phenomenon. 
The first step of modelling consisted in building a dynamic geometry figure in 
Casyopée, replicating the device. The following indications were given to the 
students: the rope is attached to the wheel in a mobile point M and the guide is on the 
fixed point P. The car is in N (figure 7). The wheel is supposed to be put into rotation 
by pulling on a horizontal rope jA. This implies not trivial constructions for the point 
M in order that the circular distance IM is equal to the linear distance Aj, and for the 
point N in order that MP+PN is constant. The students had to use Casyopée first to 
implement a dependency between magnitudes modelling the dependency in the 
figure, then to obtain a function defined by a symbolic expression thanks to 
“automatic modelling”, to get the derivative and should notice and finally to identify 
precisely the points of non differentiability. 

Dynamic Figure 

Magnitudes 

Functions defined by a 
symbolic expression Domain, 
formula. Graph, table. 

Physic
al 
device 

Figure: 7 An example of a modelling cycle 
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I report on this situation in five steps: (1) the students’ spontaneous model of the 
physical situation (2) how they built a dynamic geometry model (3) how they choose 
the dependant and independent variables and how they interpreted this choice (4) 
how they worked on the function obtained via Casyopee’s automatic modelling (5) 
how their understanding of the physical situation progressed after working on the 
symbolic expression of the function. 

Students’ spontaneous model  
At the beginning of the session, after presenting the situation and demonstrating by 
animating the scaled model, the teacher asked the students to describe what is 
happening at the lower point and whether it is different as compared to the high point. 
Figure 8 illustrates a typical answer. Students said that at the high point, the car stops 
and they had some difficulties to explain what is happening at the lower point. The 
more common expression, drop shot, is not accurate because it means that the car is 
arriving at a certain speed, stops and starts up again at a lower speed. Students 
illustrated by a graph of a piecewise linear function. Actually they thought that 
because the wheel rotates uniformly, the car’s movement should be piecewise 
uniform. 

 
Figure 8: Students’ spontaneous model 

Building a dynamic geometry model 
This was a difficult part. Students’ poor practical knowledge in trigonometry explains 
why they needed help to define M in order that the circular distance IM equalled the 
linear distance Aj. It seems more surprising that they found difficult to define N in 
order to make MP+PN=2 (the length of the rope). After the teacher indicated that PN 
is known when MP is known, some students used a circle centred in P with a radius 
of 2-MP and defined N as an intersection point with the y-axis, and others directly 
defined N with the coordinates   
(0; yP-(2-MP)).  

Choosing the variables 
Generally the students had no difficulties to operate the choice with the software. 
However, their expression was sometimes confused when explaining the choice. For 
instance a pair of students wrote in the report: “We choose distance Aj as the 
(independent) variable” and added “Aj is a function of the coordinates of N”. 

Working on the function obtained via Casyopee’s automatic modelling 

At the lo er point there is a drop shot
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The students obtained the derivative by using Casyopée’s automatic modelling under 

the form . Casyopée issued warnings because this function is not 
defined everywhere. Students ignored the warnings and obtained a graph with wrong 
vertical segments (pink in Figure 9). 

 
Figure 9: A graph of the derivative with wrong vertical segments 

The teacher drew students’ attention on these segments and they recognised that there 
should be discontinuities of the derivative corresponding to the low points. The 
teacher asked them to compute the position of these discontinuities. No students did 
this from the formal definition of the derivative. They rather came back to the 
physical device or to the dynamic geometry figure, looking for the value of jA 
corresponding to the lower point of the car. After they found these values and 
excluded them from the definition of the derivative, they got a correct graph (Figure 
10).  

  
Figure 10: A correct graph of the derivative  

Students’ understanding of the physical situation after working on the function obtained 
via automatic modelling 
Students’ understanding was much better in the last phase. They identified the 
derivative and the car’s speed, saying that the speed is null at the high point 
corresponding to a horizontal tangent on the graph of the movement. Implicitly, they 
recognised that at the lower point the car starts up again briskly at the same speed, 
speaking of “rebound” corresponding to non differentiability points, rather than of 
“drop shot” implying softer stop and restart. This is evidence that the students 
connected features of the mathematical function with a phenomenon experienced in 
the physical word. Clearly students got a broad view on this function, coordinating 
many aspects or representations, without dominance of one representation. The 
symbolic formula was an aspect between others, the pole of the derivative giving a 
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specific insight, complementary to the discontinuity on the graph, and the feeling of 
“rebound” at the lower position of the car. 

Other insight coming from a Remath “cross study” 
The experimentation of several situations based on the above ‘modelling cycle’ 
comforted the team in the productivity of the enlarged view on functions on which 
Casyopée’s extension is based. A “cross study” carried out in ReMath provided 
additional unexpected insight. ReMath aimed at investigating contextual elements 
influencing research about math education and technology, and to progress towards 
theoretical integration. A method in Remath was “cross studies”: each piece of 
software developed in the project was “cross-experimented” by two teams and this 
cross experimentation was followed by a “cross-case analysis” (Lagrange & Kynigos 
2014), one team being in charge of the design and development of the piece of 
software. Here I consider the Cruislet cross study that associated a Greek team and 
the team developing Casyopée. 
The Greek team was influenced by a constructionist framework. They designed 
Cruislet as a navigation microworld in which users direct planes across the Greek 
geography by issuing navigation instructions in either graphical/Cartesian or 
spherical/polar coordinate systems, in direct stepwise mode or by way of Logo 
programming. The modalities of employing exposed by the Cruislet team were 
consistent with their theoretical perspective. For instance, the team implemented a 
“guess my flight” situation based upon the use by students of a procedure that made 
one plane perform a flight to an arbitrary position while another reached a dependent 
position, each of its coordinates being a linear function of the same coordinate of the 
first one. Using this procedure first as a black box and then decoding the procedure in 
order to propose similar challenges, students could make sense of the situation by 
investigating the co-variation of the planes and conceiving the first plane’s position 
as an independent variable and the second plane’s position as a dependent variable.  
The Casyopée team encountered difficulties to make sense of Cruislet’s features for 
educational task, and especially did not recognize the potential of a situation like 
“guess my flight” to allow students to approach function, a central domain of interest 
for the Casyopée team. Again the Casyopée team’s view of function was not broad 
enough: the domain of co-variation at stake in Casyopée is 2D geometry and the 
functions are polynomial, rational or transcendental one variable real functions rather 
than multilinear functions. It helped to see that it would be pointless and counter-
productive to consider a notion of function transcending all possible representations.  

Functions: a broad plurality of representations rather than a single concept 
Duval’s idea of considering several register of representations, stressing the necessity 
of educating students both in the treatments inside registers and in the conversion 
between registers was productive in the first phase of development of Casyopée, 
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since it helped to build a tool and situations of use breaking with current narrow tasks 
and dominant conceptions of functions. 
However, given the big variety of representations that we had to deal with in the 
extension of Casyopée and in the cross-studies, I came to consider unproductive the 
Platonic view of function as a single mathematical object, acting in different settings 
and denoted by all these dissimilar representations. Actually, the idea of analytic 
function, as invented by Descartes, Newton and Leibnitz dominates at secondary 
level, and teachers’ and students’ conceptions of functions are strictly dependent on 
an symbolic view of functions. It means that even when they consider situations 
where geometrical or physical dependencies are involved, these dependencies are 
used as a “faire-valoir” (complementary or contrasting character in a play) rather than 
actual functions. There is then a danger that in the implementation of situations like 
the “amusement park ride” above, too much emphasize is put on symbolic facts to the 
detriment of the other interpretations3. 
It seems then more productive to think of functions as a constellation or a network of 
many representations, each rooted in a particular practice, no one dominating and 
with more or less strong connections between them rather than connections to a 
single object. This seems consistent with Radford’s (1999) view that a 
« representation does not appear as a pointer to an abstract idea but as the contextual 
instantiation of social modes of knowing as expressed and contained in signs”. 
Especially considering the case of functions, Radford critics a narrow view of 
functions and stresses that linking representations cannot be made without a common 
context.   

The learning of functions is seen as the capability of a student to move from 
one representation to another (tables, graphics, algebraic formulas, etc.). 
These “external” representations are seen as the expression of the same 
concept —that of function. In my view, each semiotic system (tables, graphics, 
etc.) leads to a particular concept (…) What this means is that a 
contextualization among representations will be needed to link them, and this 
requires a different pedagogical action. (p. 149)  

Mathematical and functional workspaces 
Above, I described how it is possible to think of functions as a plurality of 
representations, each related to a specific setting. It is important to reflect on these 
settings, since a representation does not exist alone and as Radford (1999) says, being 
acquainted with representations and making links between these requires a 
contextualisation. For me, a representation can be seen as a tool used with other 
artefacts to work in a specific domain or workspace. Mathematical workspaces 
(Kuzniak & Richard 2014) generalize geometrical workspaces. A workspace is what 

                                           
3 See footnote 1 for an example. 
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allows individuals to work on a mathematical task. In a workspace signs or language 
have their own existence as specific artefacts, rather than as “representations” of ideal 
objects. For students, the work aims both at knowing better the objects (what the 
problem is about), at mastering the artefacts (material and symbolic) and at using 
wisely a relevant framework of reference (i.e. a set of properties allowing 
explanation, deduction or inferences). 
It is important for mathematics educators to organize mathematical workspaces 
offered to their students, paying attention to (1) the internal relationships between the 
three poles, objects, artefacts and framework of reference inside a workspace and (2) 
the means they provide to students for connecting these workspaces. Retrospectively 
the work carried out about functions in the Casyopée project and illustrated by the 
above example can be thought of as an instance of this organization, including the 
design of specific (technological) artefacts insuring internal consistency and easing 
the connection between workspaces. Table 1 recapitulates the different poles for the 
workspaces involved. Since the physical device cannot be qualified of 
“mathematical”, the noun functional workspace will be used for all settings. 
 
Poles\workspaces Physical 

device 
Dynamic 
figure 

Magnitudes Algebra and 
calculus 

Object Mechanical 
dependency 

Co-variation 
of geometrical 
objects 

Co-variation 
of measure, 
variables 

Mathematical 
Functions 

Artefacts Device, 
language 

Primitives of 
construction, 
dynamicity, 
geometrical 
language 

Language, 
specific 
symbolic 
expressions 

Mathematical 
symbolism 
and language 

Framework of 
reference 

Mechanical 
constraints 

Geometrical 
properties 

Quantification Algebra and 
calculus 
theorems 

Table 1: Four workspaces 

FUNCTIONAL WORKSPACES 
After introducing workspaces as a way to make sense of representations in the 
Casyopée project, and as a means to break with a Platonist view of functions, the goal 
of this section is to extend the reflection to another similar research study, in order to 
test the relevance of this introduction on a wider basis. 
The research question in the “enlarging-shrinking alphabet” study (Lagrange, 
Psycharis 2013) was how a computer environment could help students to understand 
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dependencies and express them in formal notation. It is then consistent with 
Casyopée’s aim. However it has been conducted at a different school level (6th 
grade), with a different software environment, and functions considered here are 
linear rather than polynomial or transcendental. Turtleworlds, the computer 
environment, was chosen in order to prompt students to construct relationships and 
figures according to the rules of proportionality and to allow formal expression of 
these relationships. It consists of three components: Canvas, Logo and Variation 
Tool. The elements of a geometrical construction in the canvas are expressed by way 
of a Logo procedure. After a procedure depending on variables is defined and 
executed with a specific value, the Variation Tool provides a slider for each variable. 
For instance, a correct procedure to draw a ‘letterN’ could be: 
to letterN :r fd :r rt 135 fd :r*1.41 lt 135 fd :r end4 
Since, in the above example, the procedure properly expresses the proportional 
relationship between the sides of the letter, dragging the :t slider enlarges or shrinks 
the letter while conserving the shape.  
The task was to construct enlarging-shrinking models of capital letters with one 
variable corresponding to the height of the respective letter. In a first phase, the 
students were given a procedure with two variables 
to letterN :r :t fd :r rt 135 fd :t lt 135 fd :r end 
The students were encouraged to explore with various values of :r and :t using both 
sliders. In a second phase they were invited to change into a one variable procedure, 
drawing a correct letter for all values of :r. In a third phase they had to look for a 
general ‘method’ to prevent distortions applicable to other angles. 
Lagrange & Psycharis (2013) report on an observation of two students (A. and C.) in 
the second phase. They considered the relation of the two values as “200 plus forward 
40” which they used in the construction of the respective original pattern of N. Thus, 
they substituted the variable :t with the functional expression (:r+40). When A. 
moved the slider: r to the value 220, the figure was distorted and C. conjectured 
directly for the changes in the functional expression (“we need to add 50”). This way 
students continued to work with additive relations (e.g., :r+50, :r+45) but moved from 
constant differences to adjusted differences according to the different values of the 
independent variable. However, successive dragging on the variation tool confirmed 
that the use of an additive algebraic expression constituted an erroneous strategy for 
constructing an enlarging-shrinking model of N holding for “all values of :r”. This is 
how students moved to a multiplicative strategy under the supervison of a researcher 
(R.) 

                                           
4 1.41 is approximatively |1/cos(135°)|, fd : forward, lt : left turn, rt rigth turn. 



ETM4 | 332 

R. : Since the one [i.e. the vertical segment] is 100 and the other one [i.e. the slanted 
segment] is 145. What is the relation between 145 and 100?  
C.: It [i.e. the slanted length] is neither half. It is half … let’s say plus 45.  
Researcher: Half?   
C.: Not exactly. [After a while] One and 45 which we have already put here [i.e. the 
expression :r+45].  
R.: If this is one time and half bigger than the tilted one. How much is it? 
A.: :r plus one and a half.  
C.: [to A.] No, it would be two times and a half then. It’s :r plus half. It is one time 
and half bigger.  
A.: :r plus half.  
C.: [Thinks for a while] :r times one and a half. Lets’ try it [C. then goes straight to 
the Logo editor and types the linear relation as 1.5*:r for the slanted length.] 
After experimentation with changing the values of the functional operator they 
accepted as value 1.42.  
The observation shows that the functional relationship expressing proportionality is 
really at stake here, the students struggling to give up with additive relationship, at 
first with ambiguous utterances, then correcting in a fractional expression (one and a 
half), translating into a multiplicative relationship (1.5*:r) and finally adjusting 
thanks to the feedback of the figure. The specific challenge is to formulate a 
dependency between the length of the vertical segments and the length of the slanted 
segment in a formal form allowing its expression in a Logo procedure. 
Students work in four functional workspaces similar to those identified in the 
Casyopee experiment above. The physical system of reference is an (evocated) letter 
conserving its proportions at different sizes. The geometric figure is a path of the 
turtle in three segments with a given angle between them. In phase 1, the path 
depends on two variables and in the next phases, the challenge is to program the path 
in order that it depends on one variable while conforming to the goal that it represents 
the letter N. Magnitudes like angles and lengths are involved. An algebraic 
expression occurs to express the dependency inside the LOGO procedure.  
While activating the sliders and working on the Logo procedure, the students 
consider together the physical system, the geometrical figure, the dependency 
between magnitudes and an algebraic expression of this dependency. Their task is 
actually to understand the constraints of the physical system as a dependency linking 
two magnitudes and to find an expression for this dependency in order to write a 
procedure using a single variable. 
Here also, physical situation, dynamic figure, magnitudes and formalism offer four 
different workspaces. As a difference with the Casyopée experiment above, the 
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progression of functional meanings is not seen as a progression through the settings: 
there is no cycle. Students have constantly to jump for one workspace to the other. 
Similarly, there is no one to one correspondence between the settings and the three 
components of the computer environment. As a difference with Dynamic Geometry, 
the figure can be manipulated only by way of sliders (of the variation tool) that act on 
measures. The Logo procedures can be viewed as functions associating the figure to 
one or more variables, kinetically controlled via the sliders. However, the procedures 
do not express directly the functional relationship between lengths which is at stake. 
The actual expression of this relationship is within the procedure, embedded in 
commands for the turtle. 
Distinguishing four similar workspaces in the two experiments helps to evaluate 
choices made in the design of both experiments and software. In Casyopee, starting 
from a purely algebraic environment, a dynamic geometry window has been 
appended, and linking algebra and geometry implied conceiving a space to work on 
magnitudes. Physical systems were considered in order to take advantage of 
functional dependencies experimented in the physical world and « embodied » in 
human cognition. This is a rather epistemological view of the workspaces’ 
organisation. The Turtleworlds experiment is based on the constructionist aim to help 
students access « meaningful » algebraic forms. This is rather a cognitive view that 
does not clearly distinguish the spaces in which students have to work. Comparing 
the two experiments, one can say that in Casyopée, on the one hand the workspaces 
are well identified, but on the other hand the activity is somewhat rigidly organised as 
a (circular) path along the workspaces. In the Turtleworlds experiment, the activity is 
less constrained and more motivated, but there is a chance that students never clearly 
identify the objects, artefacts and frameworks of reference in which they work: for 
instance, here it is not clear what the letter :r represents, a magnitude or an algebraic 
variable. 

CONCLUSION 
 
This paper offered connected workspaces as an alternative to multi-representation for 
the domain of functions. This view departs from a Platonist conception of functions 
as a single ideal object. It helps also to recognize representations not as entities 
existing for themselves, but rather as artefacts co-existing with others artefacts 
helping to work on specific objects and controlled by specific frameworks of 
reference. This is productive to appreciate and contrast experiments involving 
computer environments. In this paper, reflecting on functional workspaces was done 
retrospectively, in order to make sense of experiments and software designed with 
another agenda in mind. I expect that the idea of connected functional workspaces 
will in the future, also help task and software design, as well as a priori analysis. 
Cognition is another topic for further reflection. How do students working in 
functional workspaces access to meaningful views about functions? Kuzniak & 
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Richard (2014) propose to add a cognitive layer, connected to a workspace by 
specific geneses, one being the genesis of mathematical instruments introduced by 
researchers like Lagrange (1999) under the inspiration of cognitive ergonomics. For 
me, the question at stake is how students working on specific objects with specific 
artefacts develop an understanding of a specific framework of reference. I would then 
consider that in each workspace, an instrumental genesis is at stake, constructing 
“instruments” from material artefacts (technological or not), as well as from other 
semiotic artefacts (discursive or figurative). Especially in the domain of functions, 
linking the instruments built in geneses of a plurality of workspaces is important. 
Presmeg (2006) offered to think of semiotic chains as a way to bridge a gap between 
activities of everyday practices and mathematical activities and to organize a process 
in which “goals, discourse patterns, and use of terms and symbols, all move towards 
that of classroom mathematical practices in a way that has the potential to preserve 
essential structure and some of the meanings of the original activity.” Clearly, this 
kind of process is at work in both “amusement park ride” and “enlarging-shrinking 
alphabet” situations above. Characterising these processes as a way to connect 
workspaces is a promising direction. 
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