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This paper is about the design of classroom situations of modelling real world 
situations at upper secondary level to confront student to questions and ideas in 
calculus. At this level, curricula avoid formal approaches of calculus notions, but in 
current strategies, modelling is used as a motivation for algebraic methods, rather 
than as a basis for scientific work. The paper proposes the framework of connected 
working spaces for designing and implementing sustainable situations of modelling 
helping a wider approach of the curriculum in these classes, and giving sense to the 
concepts taught by making students understand interactions between these concepts 
and the interactions between these concepts and other sciences or real world 
situations. The example of a situation of modelling a suspension bridge is presented 
on the basis of four working spaces (statics, geometrical, algorithmic, and 
mathematical functions). The implementation is carried out through "jigsaw group 
work" that helps students work in these spaces and make connections between them. 
Keywords: modelling, suspension bridge connected working spaces, calculus, 
Casyopée, jigsaw group work.  
As a researcher, I am working with teachers in the Casyopée group in the context of 
the French national curriculum at upper secondary level. Like in other regions of the 
world, a large part of this curriculum deals with functions. Formal aspects, like the 
structure of the number line or a definition of limits are not considered and then tasks 
for students are supposed to favor intuitive approaches of notions. However, while 
emphasizing problem solving in various domains, the curriculum actually privileges 
application of classical “algebraic” methods. Real world situations are considered in a 
narrow approach of modeling: “translating into the mathematical language”. 
Classroom practices reflect this narrow approach: the teacher invites students to 
express “informal conjectures”, and then, abruptly requests them to express and 
prove these conjectures by pure mathematical means (Minh and Lagrange, 2016). 
The consequence is an over emphasis on algebraic forms and manipulation, not 
helping students to make sense of notions in calculus.  
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In reaction to this narrow treatment of functions and calculus, our1 objective is to 
promote secondary calculus as an effective tool to understand the world, rather than a 
meaningless manipulation of symbols. There is a big emphasis on real world 
situations and on modelling in mathematics education. Conspicuous examples are the 
14th ICMI Study, Applications and modelling in mathematics education (Blum, 
Galbraith, Henn & Niss, 2002 and 2007) and the two 2006 special issues of ZDM - 
The International Journal on Mathematics Education (volumes 38(2) and 38(3)). 
Modelling is however a very open domain, with a lot of different options. One option 
is to consider students' modelling activity as a way to develop modelling 
competencies independently of the learning of specific mathematical knowledge 
(Mass, 2006). Another option is to create modelling situations focused on a given 
knowledge or concept, through "guided reinvention" (Gravemeijer & Doorman, 
1999). In addition, besides all the progress made in mathematics education research, 
authors like Burkhardt (2008) pointed out the difficult existence of mathematical 
modelling practices in ordinary classrooms.  
Our approach is specific in the sense that we are looking for situations (1) that are 
neither purely oriented towards modelling competencies, nor towards the 
"reinvention" of an isolated mathematical concept, (2) that are sustainable in ordinary 
upper secondary classes and (3) that help a wider approach of the curriculum in these 
classes, giving sense to the concepts taught by making students understand 
interactions between these concepts and the interactions between these concepts and 
other sciences or real world situations. More precisely, the goal of the Casyopée 
group is to create and experiment secondary classroom situations where students 
understand functions and calculus, through convergent approaches of a question 
about a phenomenon. In parallel, the group develops a geometric and algebraic 
software environment (Casyopée) as a tool to study these phenomena. Examples of 
phenomena considered as a basis for classroom situations are:  

• Games of “chase and prey” (will Coyote hit BipBip?); it is based on the common 
experience that mobiles moving on convergent trajectories may or may not 
collide, depending on their respective speeds. In a situation inspired by Cazes and 
Vandebrouck (2014) Coyote and BipBip have given speeds, and students have to 
adjust the angle of Coyote's trajectory in order that collision occurs. It brings to 
the forth a fundamental not obvious idea: in any model, both movements have to 
be parametrized by the same quantity, the time. 

• Closeness on a curve (what is the position on a curve closest to a given point 
outside this curve?). The question is how to express closeness and how to 
parametrize the movement of the mobile in order to get an accurate model. 

                                           
1 "We" and "our" refer to the Casyopée group. I am grateful to R Halbert, C. Le Bihan, B. Le Feuvre and M. C. Manens 
who introduced me to "jigsaw group work", and carried out the design and implementation of classroom situations after 
my proposition about modelling bridges. 
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• Vertical movement in an amusement park ride (how to give account of different 
behaviors at low and high points). In a situation, a person is in a car subject to a 
periodic vertical movement. She experiences a "smooth" transition at high points 
and an "abrupt" transition at low points. This can be related to students' bodily 
experience, and explained by way of models of the mechanical device animating 
the car, including a mathematical function whose derivative is discontinuous for 
values corresponding to low points. 

• Tension in the cable of a suspension bridge (how does the tension evolve along 
the bridge, and how does this explain the shape of the cable?). Students study a 
suspension bridge, and have to explain why the main cables are not horizontal 
strait lines. By concrete experiments, they have to realize how a weight suspended 
on the cable influences its shape, and understand the idea of tension as a vector 
quantity evolving along the cable, because of the weight of the deck considered as 
a collection of infinitesimal units. 

Thus the question for the Casyopée group is how to implement classroom situations 
taking advantage of real world, while confronting students to questions and ideas in 
calculus. In the next section, this question will be refined by way of a theoretical 
framework, then we will develop the last example. 
THEORETICAL FRAMEWORK 
I am currently building a framework inspired by Kuzniak (2013) and Kuzniak & 
Richard (2013). Lagrange (2015) introduced the idea of connected functional 
working spaces as an alternative to multi-representation for the domain of functions. 
This helps to depart from a Platonist conception of functions as a single ideal object. 
It helps also to recognize representations not as entities existing for themselves, but 
rather as artefacts co-existing with others artefacts helping to work on specific objects 
and controlled by specific frameworks of reference. The example of the amusement 
park ride helped to present four different working spaces offering specific means for 
modelling a dependency between measures. One is related to the physical device, the 
second to a dynamic figure modeling this device, the third is about magnitudes in 
dependency and the fourth is characterized by the classical mathematical symbolism 
and notions in calculus. The situation was based on the “embodied cognition” 
hypothesis and on the use of Casyopée’s functionalities. The “embodied cognition” 
hypothesis is that students’ reference to bodily activity in physical settings and to 
emotions experienced in this activity, can be a basis for deeper understanding of 
notions in calculus, as compared to a pure formal approach of these notions 
(Rasmussen et al, 2004). Casyopée especially helped to build a link between the 
geometrical dependency and a function modelling this dependency. 
The idea of connected functional working spaces was further developed by Minh & 
Lagrange (2016). We were influenced by Kuzniak (2013) that presents geometrical 
working spaces as a way to avoid misunderstandings in geometrical education, for 
instance with regard to how students should reason, developing their spatial intuition 
and ability with instruments, or rejecting these in favor of formal deduction. Like 
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geometrical working spaces, considering functional working spaces allows teachers 
and students to work on functions in various spaces, including spaces where 
functions are experienced without algebraic formalization, avoiding the 
predominance of a working space restricted to algebraic representations and 
manipulations. Like with geometrical working spaces, working in a specific 
functional space should allow working on functions with specific instruments and 
under control of specific rules. We specified a dynamic geometry space, a measure 
space, and an algebra space, and indicated specific functionalities of Casyopée 
bringing artefacts in each space and means for connecting the spaces. We examined 
then the functionality of this framework for implementing and analyzing classroom 
situations and for analyzing students’ and teachers’ evolution relatively to functions, 
in terms of geneses related to each space. We took the above example of "closeness 
on a curve" to consider students’ activity in each space and connections between 
spaces, in order to develop principles of design for a classroom situation, to assess 
their efficiency and to highlight differences with current classroom situations based 
on geometrical optimization where the teacher sees exploration as a “motivation” and 
not a specific work bringing specific conceptualizations. 
This paper develops further this idea of connected working spaces as a framework to 
design and evaluate situations of modelling, allowing students to understand 
functions and calculus, through convergent approaches of a question about a 
phenomenon. The idea is that the study of a question involves several working spaces 
around objects, each object in a space being a model2 of the corresponding object in 
another. Each space is characterized by the artifacts that allow work on the question 
and a reference framework or theoretical framework. This implies that the question 
makes sense to work in different spaces and gives meaning to objects, without 
favoring a space. 

QUESTION AND METHOD 
Kuzniak & Richard (2013) stress that working spaces are not given, but are 
constructed in the teaching learning process. Thus, working spaces of reference may 
exist around socially accepted standard for formulating questions and answers 
organized by favoring certain artifacts and modes of thought. But they have to be 
converted and organized to become "suitable" working spaces in a given educational 
institution with a defined function. As Kuzniak (2011), said "les experts concepteurs 
de la réorganisation didactique des diverses composantes de l'espace de travail (…) 
aménagent un ETM qui peut être idoine parce qu’il respecte les intentions et le cahier 
des charges de l’institution demandeuse ". We wish to play, even modestly, the role 
of experts as understood by Kuzniak (2011), and therefore our current questioning is: 

                                           
2 In contrast to the narrow view of a model as “a real world situation translated into the mathematical language”, we 
think of models as more or less tangible systems in relation of similarity or representativeness, and helping to 
understand a complex phenomenon, without hierarchical organization.  



Lagrange 

 1 - 5 

How to organize suitable working spaces that make students understand 
interactions between concepts taught at upper secondary level, and the 
interactions between these concepts and other sciences or real world situations? 
What conceptualizations can be expected in these working spaces, and how 
these conceptualizations interact with more standard mathematics?  

In addition, we wish to try the above mentioned “embodied cognition” hypothesis 
mentioned above and explained by Núñez, Edwards and Matos (1999) by stressing 
that learning and cognition cannot be fully understood without considering the shared 
biology and fundamental bodily experiences of human beings and concluding that 
mathematics education should provide a learning environment “in which 
mathematical ideas are taught and discussed with all their human embodied and 
social features". 
Looking for a situation to implement the above idea of interaction between concepts 
in calculus and involving real world and other science, we thought that studying a 
suspension bridge would be a suitable basis, for the reasons explained below. 

Suspension	bridges	
A suspension bridge is a type of bridge in which the deck (generally a roadway) is 
hung below suspension (or main) cables by vertical suspensors equally spaced. There 
is no compression in the deck and this allows a light construction and a long span 
(figure 1a). The weight of the deck applied via the suspensors results in a tension in 
the main cables. The main cables are anchored on top of pillars and the pillars 
support the compression resulting of the tension. As stated above, the central question 
is to find models of a main cable, allowing to solve technical questions like the value 
of the tension and therefore of the compression in the pillars for given data 
characterizing the bridge. 
A discrete model derives from the finite number of suspensors: a main cable is 
represented as a collection of segments, beginning and ending at the anchoring 
points, and separated by the suspension points linking the main cable and the 
suspensors. Modelling the tension in one of the main cable can be made by 
considering the sequence of tensions T⃗ i along every segment, and for each, the 
values of the horizontal component and of the vertical component (Hi ; Vi ) . The 
static equilibrium law, applied at every suspension point, implies that the horizontal 
component is the same in all segments. It also implies that the sequence of values of 
the vertical component is in arithmetic progression, With a choice of the direction of 
the tension, the vertical component is negative at one anchoring point, with an 
absolute value equal to the half of the weight of the deck supported by the cable (a 
quarter of the whole weight in case of two cables) and positive at the other one with 
the same absolute value, and the common difference is the value ΔP of the weight of 
a portion of the deck supported by a suspensor (figure 1c).  
In the same discrete model, the slope of a segment is the ratio of the vertical by the 
horizontal components of the tension in this segment, and therefore is also in 
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arithmetical progression. Knowing the position of one anchoring point (top of a 
pillar) it is possible to compute the sequence of the coordinates of the points of the 
collection of segments modelling the main cable, and to adjust the value of the 
constant horizontal component in order to get the desired elevation of the center of 
the cable above the deck (figure 1e). 

 
a) A suspension bridge 

 
b) A physical model of a suspension 

bridge 

 
c) Tensions on a segment (red) of the discrete 

model. 

d) An algorithmic discrete model of the 
suspension points; n is the number of 
segments, and H (resp. V) the horizontal 
(resp. vertical) component of the tension. 

 
e) The discrete model for two values of the 

number of segments f) Equation and curve (red) of the continuous 
model, compared to a picture of the bridge 
and to the discrete model (magenta). The 
horizontal component H has to be adjusted 
in order that the three models fit. 

Figure 1: models of a suspension bridge 

Given the big number of suspensors, one can look for a curve, limit of the collection 
of segments modeling the cable when this number tends to infinity, and the distance 
between suspensors tends to zero. Since the limit of the slope of a segment whose 
extremities tends to a point, is the gradient of the curve at this point, the arithmetical 
nature of the sequence of the slopes of the segments implies that the gradient depends 
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linearly on the position on the curve, and, by integration, the curve is of quadratic 
nature (i.e. an arc of a parabola). This is the continuous model (figure 1f). 

Affordances, constraints and general design 
The brief presentation above shows that studying a suspension bridge implies 
considering data in the real world as well as a number of interrelated concepts in 
physics and calculus: tension, static equilibrium of forces, projection of vectors, slope 
of segments and gradient of curves, arithmetic progression and linear function, 
integration, discrete and continuous models, limits and integration… All these 
contents are taught in secondary curricula, thus the goal for students is not to 
"reinvent" each of them in isolation, but rather to recognize how a question in a real 
world situation involves understanding these concepts operationally and in 
interaction. In the French curriculum, the study of a suspension bridge can be carried 
out in the last year of the secondary scientific stream (12th grade, Terminale). In the 
previous year, students studied arithmetic progressions and derivative of functions (in 
connection with the slope of tangent lines), and learnt to program the values of 
sequences, as well as to program approximate curves of functions whose derivative is 
known (the Euler method). In this last year, the students learnt about tensions in 
physics and about integration in mathematics. 
A constraint results of a character of these classes: students pass an important exam at 
the end of the year, evaluating standard proficiencies rather that deep understanding. 
Thus there is limited time for situations going beyond isolated proficiencies in typical 
tasks, and a teacher has to highlight the contribution of less standard tasks in these 
situations. 
The Casyopée group used the framework of connected working spaces to design a 
classroom situation exploiting the potential of the study of a suspension bridge. We 
consider four working spaces. In the first one, the object at stake is the sequence of 
tensions at the connection points of the suspensors, and the rules are the static 
equilibrium law and the properties of arithmetic progressions. Artefacts are concrete 
measurement devices used in physics and mathematics, dynamometers, angle 
protractor, and also more "abstract" tools like the decomposition of tensions in 
vertical and horizontal components. We name this working space, the static systems 
working space, or shortly, the statics working space. The second working space deals 
with the discrete model of a main cable and then with geometrical objects. The main 
rule is the analytical definition of a segment: students have to compute the 
coordinates of the end point, knowing the coordinates of the other point, the slope 
and the difference between abscissas. We name this working space, the geometrical 
space. In the third working space, an important artefact is Casyopée's programming 
environment, that allows computing a series of points by way of a simple iterative 
treatment (figure 1d); the points allows defining a continuous piecewise functions, 
whose graph, in the case of the bridge, represents the discrete model of the main 
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cable (figure 1e). We name this working space, the algorithmic space3. Finally, the 
objects in the fourth space are functions governed by classical rules in calculus. This 
is the mathematical functions working space. Integrating a linear function should not 
be difficult for students. However, the formula of the linear function involves a 
parameter (the horizontal component H of the tension), and then students might be 
uncomfortable and benefit of Casyopée's symbolic capabilities. They can also use 
Casyopée to get a curve of this continuous model and compare to a picture of the 
bridge and to the discrete model, and adjust the horizontal component H in order that 
the three models fit. Thus Casyopée brings artefacts, useful in the geometrical 
algorithmic space and in the mathematical functions space, and also helping to 
connect these.  

IMPLEMENTATION 
As said before, there are constraints at this pre-exam level and the implementation is 
limited to three and a half hours and organized in four phases. The first phase is one 
hour long and has been prepared with the physics teacher. It aims first to introduce 
students to questions related to bridges, particularly suspension bridges. They are 
invited to consult a dedicated website (http://structurae.info/ouvrages/ponts-et-
viaducs), to select and sketch four bridges of different types, to look at a video 
illustrating the idea of tension along a horizontal rope and the fact that, whatever the 
tension, the rope is no more a straight line, as soon as force is applied vertically on a 
point. They have to answer three questions: (1) why in a suspension bridge the main 
cables are not horizontal? (2) what type of functions do you propose to model the 
main cable? (3) is the shape of a main cable determined by the length of the 
suspensors ? Also in this first phase, the students have to build two apparatuses like 
in figure 2, read the tensions in the dynamometers and the angles, compute the 
horizontal and the vertical components of the tensions and verify the static 
equilibrium of forces. 

 
Figure 2: apparatuses in the first phase 
The second phase is 50 mn long. At the beginning, the data related to the Golden 
Gate Bridge is presented to the whole class. Students also look at a physical model 
(figure 1b), and one student reads the tensions in the dynamometers to the whole 
class. Then students are split into groups of four. Each group has one task, A or B, C 
or D.  

                                           
3 About algorithmic working spaces, see Laval (2015). 
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Task A is related to the statics working space: inspired by the work in the first phase, 
students have to consider the sequence of horizontal and the vertical components of 
tensions at the connection points, recognize that the horizontal component is constant 
and compute a formula for the series of vertical components. 
Task B is related to the geometrical algorithmic working space. A formula for the 
value of the slope of each segment in a discrete model of the main cable is given to 
the students, depending on a parameter H, and on the number n of segments. Students 
have to compute formulas for generating the series of x and y-coordinates of the 
suspension points.  
Task C is related to the algorithmic working space. An algorithm like in figure 1d is 
given to them; they have to enter and execute the algorithm in Casyopée, interpret the 
parameter n, and adjust the parameter H in order that the model given by the 
algorithm conforms to the shape of the cable (figure 1e). 
Task D is related to the mathematical functions working space. Students have to 
search for a function f whose curve models a main cable (continuous model). They 
are informed that the horizontal component of the tension in the cable is a constant H 
and that, in chosen axis, the formula for the vertical component of the tension at a 
point of x-coordinate x is given by the formula V( x)=P×x

2L , where P is the weight of 
the deck and L its length. They have to find a formula for the derivative of f, taking 
into account that the tension is in the direction of the tangent to the curve. Then, 
using Casyopée, they have to find a formula for f and adjust the parameter H in order 
that the curve of the function f conforms to the shape of the cable (figure 1f). 
The third phase is also 50mn long. The students form new groups, also of four. Each 
of these new groups is made in order to bring together one or two students of each of 
the previous groups respectively doing task A, B and C. The groups are invited to 
share their findings and to write a report emphasizing the important points of the 
study. In this work a student coming for instance from a group that did task A is an 
expert in the statics working space, informing the students that did other tasks, of the 
methods and results in this working space. This organization in two series of groups 
is inspired by the « Jigsaw Classroom », which is designed as 

a cooperative learning technique that reduces racial conflict among school 
children, promotes better learning, improves student motivation, and increases 
enjoyment of the learning experience… Just as in a jigsaw puzzle, each piece 
— each student's part — is essential for the completion and full understanding 
of the final product4.  

The advantage of this organization is that students, in a period of time compatible 
with the constraints at this level, get a global understanding of the study of a problem, 
performing by themselves some of the key tasks related to this problem, even when 

                                           
4 https://www.jigsaw.org/ 
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they do not 'solve' the problem in all aspects. As illustrated above, the idea of several 
working spaces for the study of a problem is a guide for organizing the tasks.  
The fourth phase (30 mn long) is a collective synthesis led by Professor. 

OBSERVATION AND EVALUATION 
This implementation was observed in a class of 35 students by the end of March. This 
class was familiar with the "jigsaw classroom" organization that had already been put 
into operation for collaborative work on a lesson. The students were mostly average 
achievers. The contents at stake in physics and mathematics had been taught to 
students in previous lessons. The phases have been video recorded, and interviews 
were conducted with 3 students after phase 3. Due to the limited size of this 
contribution we restrict our analysis to some hints about how students behaved and 
progressively understood the structure of the bridge.  

a)  

 

 

b)  

 

 
Figure 3: answers in the first phase 

In the first phase, most students sketched a suspension bridge without suspensors 
(figure 3a). They generally explained the non-horizontality of the main cable by the 
weight of the deck, but agreed with the false explanation of the shape by the length of 
the suspensors. They understood from the video that the weight of the deck "bends" 
the cable, but they did not link the shape of the cable with the uniform repartition of 
the weight, thanks to the suspensors. Isolated students showed a better understanding, 
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writing that the shape is the consequence of the forces (or tensions) on the cable 
(figure 3b). In the rest of the first phase, after overcoming instrumental difficulties 
with the apparatuses (figure 2), the students correctly recorded the angles and the 
intensity of forces. They recognized the static equilibrium law, but they generally did 
not compute the components. Especially the fact that the horizontal component is the 
same on all the three dynamometers in the apparatus with two weights (figure 2) did 
not appear. In the classroom discussion, before dividing the class in groups for phase 
2, the teacher insisted on the decomposition of a vector in components and on the 
variations of the components of the tension in the cable at stake in the next phases. 
He also repeated that the goal is to study mathematically the shape of the cable. 
For the group work in phases 2 and 3, I report only on a series of four groups 
observed doing each task in phase 2, and on one group in phase 3 bringing together 
students observed in phase 2, leaving for further work a comparison to other students 
in the whole class. In phase 2, students observed doing task A mainly succeeded, 
while difficulties were observed for students doing other tasks. Students doing task B 
started by sketching a bridge with a lot of suspensors, not allowing to consider 
segments. They were prompted by the observer to limit to 4 suspensors. They took 
time to find the coordinates of the anchoring point, and had difficulties to use the 
formula given for the slope of the segments and the distance between suspensors in 
order to calculate the coordinates of the next point. Actually, this calculation involves 
several parameters related to data of the bridge, a common situation in physical 
sciences but not in mathematics. Students doing task C took time to enter the 
algorithm in Casyopée. Nothing or a wrong display appeared on the screen, because 
of small mistakes. They could correct only when the observer helped them to analyze 
the algorithm. They identified the parameter n as related to the number of suspensors 
and proposed the value 83 (the number of suspensors in the Golden Gate Bridge). 
They considered that this value is "close to infinity" and that is why the curve did not 
appear as a collection of segments, in contrast to small values of n. When the 
observer explained that H is a tension, they get aware that increasing the value of this 
parameter "straightens" the cable, and found a suitable value. Students doing task D 
found a formula for the vertical tension, but had difficulty to interpret the fact that the 
tension is in the direction of the tangent to the curve.  
In the group of phase 3, each student explained her task and her work in the 
preceding phase. The video recording shows that other students listened attentively 
and asked for further explanation. The parameter H was identified by students as 
playing a role in each task; for instance when a student who did task C did not 
remember the effect of increasing H, confusing with the "height of the cable", the 
student who did task A corrected him, saying that it is a tension and then increasing 
should "straighten" rather than "slacken" the cable. The same student helped to 
overcome the difficulty met by the student who did task D to find the direction of the 
tangent to the curve and then the derivative of the function, saying "you just integrate 
the quotient of V and H". Going further in task D, the students were confused by the 
parameter H in the denominator, some proposing a Ln(H) in the antiderivative. They 
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could achieve task D, using Casyopée. In contrast, the unfinished task B, and the 
connection with the algorithm in task C were not discussed. 
Three students were interviewed after phase 3, as a method to further evaluate what 
connections students made between working spaces during the group work. They 
stressed that the situation was more complex than usually ("we had to connect a lot of 
different things") and that they were "not used to mix physic and mathematics". 
Commenting the first phase, they showed how their awareness of the structure of a 
bridge progressed: they mentioned the role of the suspensors and made the link 
between a suspension bridge and an arched bridge with regard on how the deck is 
supported. They made also the link between the apparatus with two weights and a 
suspension bridge "with two suspensors". They still had difficulties in considering the 
slopes of the segments in task B in order to find the coordinates of the suspension 
points. However, they correctly interpreted the algorithm of task C, and were able to 
connect the evolution of H, and x and y respectively to task A and B. They did not 
show clear awareness that the function of task D was a limit of the continuous 
piecewise function of Task C. From graphical evidence they thought that it was more 
or less the same function for big values of n. Visualization is then the way students 
connected the algorithmic and the mathematical function working spaces. The 
observer asked to explain why the gradient in a point of the curve is the quotient of V 
and H. The expected answer was that the tension has the direction of the tangent, but 
the students simply wrote f '(x) = Δy/Δx = V(x)/ H without more explanation. It seems 
that the first equality is common in the physics course, and that the second derives 
from the definition of the components in task A. Thus students made a connection 
between the statics space and the mathematical function space without explicit 
consideration of a limit. 
 

 
Figure 4: the connections made by students between working spaces 
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CONCLUSION 
In Minh and Lagrange (2016), we demonstrated the need for considering three 
connected working spaces when implementing a suitable situation about geometrical 
optimization, taking the example of closeness on a curve, as evocated in the 
introduction. The knowledge at stake was the awareness of functions as models of 
dependencies, and the necessity of quantifying for a mathematical study of a 
phenomenon. Like in the situations of “chase and prey” and of "vertical movement in 
an amusement park ride", students' understanding of geometrical optimization 
benefited of their everyday bodily experience in the sense of Núñez, Edwards and 
Matos (1999). In “chase and prey”, human experience of concrete situations helps to 
anticipate a trajectory taking into account the distance made by the prey during the 
pursuer's course. In "closeness on a curve", it is a common experience that a mobile 
on a trajectory comes closer and closer a given point outside this trajectory, up to a 
certain position, and then goes farther and farther. In the amusement park the 
"smooth" and "abrupt" transitions can be related to students' bodily experience. This 
is less clear with the phenomenon of tension in the cable of the suspension bridge, 
since tensions and especially variations of tension are generally not in the everyday 
experience. That is why experimenting with dynamometers in the first phase, and the 
emphasis on tensions in the other phases5, was important. In some sense, when 
modelling real word phenomena, students' bodily experience can never be directly 
taken for granted. It has to be developed explicitly via physical experiences and 
discourse throughout the modelling process. The progression of students' awareness 
of the structure of a bridge is evidence of this development. 
In this example of the suspension bridge, we used the connected working spaces 
framework to implement an innovative "jigsaw" organization of the group work. The 
observation shows that student did not progress as much as expected in the second 
phase especially with tasks B, C and D. Techniques, especially in analytical 
geometry, although known for a couple of years, could not be activated in this 
complex situation, and correcting an algorithm was difficult. However, in the third 
phase students could consider the whole modelling process, make connections 
between working spaces, and "fill some gaps" of the second phase. Figure 4 
summarizes the connections made by students. I interpret those in terms of genesis in 
the sense of cognitive processes involved in students' activity (Kuzniak, 2013). The 
connections between the algorithmic and the mathematical function spaces, and 
between the statics and the algorithmic spaces deal with vizualisation, while the 
connections between the algorithmic and the geometrical spaces, and between the 
statics and the mathematical function spaces deal with the use of symbols as artefacts. 
Figure 4 shows also missing connections to the geometrical working space: the 
students did not prove the formula for the slope of a segment from the physical 

                                           
5 A study of the teacher's and the observer's intervention during the group work could give evidence of this. An 
experience like in the picture at http://goldengate.org/exhibits/images/GGB-exhibit3-2_1.jpg could also be useful. 
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consideration of the tension, and did not consider the gradient of the mathematical 
function as a limit of this slope. These missing connections deal with the discursive 
process of argumentation and proofs.  
Finally the four working spaces and the "jigsaw" organization in a modeling activity, 
produce an answer to the question page 5 of how to make students understand 
interactions between concepts taught at upper secondary level, and the interactions 
between these concepts and other sciences or real world situations: at least at the 
informal level students get awareness of physical entities and of mathematical tools 
to work on these entities. It is the role of the collective synthesis in phase 4, not 
analyzed here, to bring this to a more formal level6. About the conceptualizations in 
this activity, I noted cognitive processes in visualization and use of symbols, and 
deficiency in the discursive process of argumentation and proofs. This finding is 
consistent with the limited possibilities for students to carry out proofs in actual 
secondary calculus 7 . It shows also that, in spite of this limitation, the work of 
modelling involves very rich cognitive processes in visualization and use of symbols, 
provided that suitable working spaces are organized. Another important observation 
is the central role of the algorithmic working space through connections to the three 
other spaces. 
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